2,860 research outputs found

    The Potential Electoral Influence of Internet Memes

    Get PDF
    The rising popularity of social media has affected the communication methods of political candidates within the United States. Given the online presence of candidates in recent years, this paper argues that it’s time to consider internet memes – one of the many facets most commonly found on social media – as political rhetoric. This paper seeks to discern which components of an internet meme are most effective in persuading a young voter, using a visually rhetorical approach to understand which characteristics make it most effective. The study also seeks to find which demographics are most likely to be influenced, using Cambridge Analytica’s belief that voter personalities matter. Using Limor Shifman’s three memetic dimensions – content, form, and stance – the author created three pairs of memes about a fictional political candidate, Jonathan Bell, and then distributed the memes as a Canvas survey for 159 college students. The effectiveness of the meme was measured by its ability to influence a young voter to share it, like the candidate it references, and evaluate their knowledge of the candidate referenced as reliable. Using STATA contingency tables and ordered probit analyses, all four of the significant findings of the study were determined as not influenced by the characteristics of the memes, but rather the characteristics of their recipients. Prior exposure and interaction with internet memes, gender, race, and grade point average were the determining factors for a young voter’s susceptibility to the rhetoric contained within the memes in the survey. This paper offers empirical results to anyone with an interest in memetics, the young electorate, or political communication. It suggests that if internet memes want to be treated as a form of communicative media, scholars first need to understand to whom memes communicate and why

    Mast Cells are Important Modifiers of Autoimmune Disease: With so Much Evidence, Why is There Still Controversy?

    Get PDF
    There is abundant evidence that mast cells are active participants in events that mediate tissue damage in autoimmune disease. Disease-associated increases in mast cell numbers accompanied by mast cell degranulation and elaboration of numerous mast cell mediators at sites of inflammation are commonly observed in many human autoimmune diseases including multiple sclerosis, rheumatoid arthritis, and bullous pemphigoid. In animal models, treatment with mast cell stabilizing drugs or mast cell ablation can result in diminished disease. A variety of receptors including those engaged by antibody, complement, pathogens, and intrinsic danger signals are implicated in mast cell activation in disease. Similar to their role as first responders in infection settings, mast cells likely orchestrate early recruitment of immune cells, including neutrophils, to the sites of autoimmune destruction. This co-localization promotes cellular crosstalk and activation and results in the amplification of the local inflammatory response thereby promoting and sustaining tissue damage. Despite the evidence, there is still a debate regarding the relative role of mast cells in these processes. However, by definition, mast cells can only act as accessory cells to the self-reactive T and/or antibody driven autoimmune responses. Thus, when evaluating mast cell involvement using existing and somewhat imperfect animal models of disease, their importance is sometimes obscured. However, these potent immune cells are undoubtedly major contributors to autoimmunity and should be considered as important targets for therapeutic disease intervention

    Internal interannual variability of the winter polar vortex in a simple model of the seasonally evolving stratosphere

    Get PDF
    We investigate persistent low-frequency variability of the stratospheric winter polar vortex in a rotating spherical shallow-water model under the action of topographic wave-forcing and radiative cooling to a simple time-varying equilibrium state representative of the seasonal cycle in solar heating. A range of modes of variability is obtained, dependent on wave forcing amplitude and characterized by the distribution of quiescent and disturbed winters, defined as winters in which the vortex is either close to radiative equilibrium, with low planetary wave amplitude, or else strongly disturbed from equilibrium by the wave forcing. At low forcing amplitude the vortex is typically quiescent every year, while at higher amplitude it is typically disturbed; in both cases there is little year-to-year variation of the vortex state. For a range of intermediate forcing amplitudes, however, the vortex transitions between quiescent and disturbed states from one winter to the next with a persistent and well-defined pattern of variability. To investigate the extent to which the low-frequency variability found here may be explained in terms of a low-latitude flywheel mechanism, we conduct additional experiments varying a linear drag on the zonal mean flow in the tropics and find that sufficiently strong drag can completely suppress the variability. The robustness of the variability is demonstrated by further experiments using a modified radiative equilibrium profile, associated with a tropical westerly flow: similar variability is obtained but the modified profile is less effective at constraining the tropical flow from a persistent easterly acceleration.PostprintPeer reviewe

    Invasive Grasses Consistently Create Similar Plant-soil Feedback Types in Soils Collected from Geographically Distant Locations

    Get PDF
    Aims Plants of similar life forms and closely related species have been observed to create similar types of plant–soil feedbacks (PSFs). However, investigations of the consistency of PSFs within species have not yielded clear results. For example, it has been reported that species create different types of PSFs in their native and introduced ranges. The aim of this project is to examine if four species create similar PSF types from soils collected from widely distributed areas within their introduced range. The soil for this project was collected from three areas in western North America. With this design, we aim to determine species- and site-specific ability to create PSFs and if the type of PSF created is consistent in all soil from all three collection areas. The species examined are Agropyron cristatum, Centaurea solstitialis, Poa pratensis and Taeniatherum caput-medusae. Methods We used three-field collected soils (from northern Nevada, western Montana and eastern Montana) in a two-phase greenhouse experiment to quantify the type of PSFs created by four invasive species. The first phase was a conditioning phase wherein each invasive species created species-specific changes to the soil. The second phase of the experiment was the response phase wherein both the conditioning species and a native phytometer were grown in the conditioned soil and in unconditioned (control) soil. The final aboveground biomass was used to evaluate the effect of conditioning and to determine the type of PSF created by each invasive species. Important Findings Our results suggest that three of our four study species did show consistency in relation to PSF. Two species A. cristatum and T. caputmedusae consistently created PSF types that benefit conspecifics more than heterospecifics (and thus are ‘invasive’ PSF types) and P. pratensis consistently exhibited no, or ‘neutral’, feedbacks. The fourth species (C. solstitialis) was inconsistent: in one soil, no feedback was created; in other soil, an invasive PSF was created and in the last soil, a feedback that relatively benefited the native phytometer was created. Thus, PSFs appear to uniformly contribute to the success of two species (A. cristatum and T. caput-medusae) but not C. solstitialis nor P. pratensis

    A trigonometric interpolation approach to mixed-type boundary problems associated with permeameter shape factors

    Get PDF
    [1] Hydraulic conductivity is a fundamental hydrogeological parameter, whose in situ measurement at a local scale is principally performed through injection tests from screened probes or using impermeable packers in screened wells. The shape factor F [L] is a proportionality constant required to estimate conductivity from observed flow rate to injection head ratios, and it depends on the geometric properties of the flow field. Existing approaches for determination of F are either based on geometric or mathematical simplifications and are limited to particular assumptions about the flow domain's external boundaries. The present work presents a general semianalytical solution to steady state axisymmetric flow problems, where external boundaries may be nearby and of arbitrary combinations of impermeable and constant head type. The inner boundary along the probe or well may consist of an arbitrary number of impermeable and constant head intervals resulting in a mixed-type boundary value problem, for which a novel and direct solution method based on trigonometric interpolation is presented. The approach is applied to generate practical nondimensional charts of F for different field and laboratory situations. Results show that F is affected by less than 5% if a minimum distance of 10 probe or well diameters is kept between the injection screen and a nearby boundary. Similarly, minimum packer lengths of two well diameters are required to avoid increasing F by more than 10%. Furthermore, F is determined for laboratory barrel experiments giving guidelines for achieving equal shape factors as in field situations without nearby boundaries. F for the theoretical case of infinitely short packers is shown to be infinitely large

    Functional Impairment, Illness Burden, and Depressive Symptoms in Older Adults: Does Type of Social Relationship Matter?

    Get PDF
    Objective: The nature of interpersonal relationships, whether supportive or critical, may affect the association between health status and mental health outcomes. We examined the potential moderating effects of social support, as a buffer, and family criticism, as an exacerbating factor, on the association between illness burden, functional impairment and depressive symptoms. Methods: Our sample of 735 older adults, 65 years and older, was recruited from internal and family medicine primary care offices. Trained interviewers administered the Hamilton Rating Scale for Depression, Duke Social Support Inventory, and Family Emotional Involvement and Criticism Scale. Physician-rated assessments of health, including the Karnofsky Performance Status Scale and Cumulative Illness Rating Scale, were also completed. Results: Linear multivariable hierarchical regression results indicate that social interaction was a significant buffer, weakening the association between illness burden and depressive symptoms, whereas perceived social support buffered the relationship between functional impairment and depressive symptoms. Family criticism and instrumental social support were not significant moderators. Conclusions: Type of medical dysfunction, whether illness or impairment, may require different therapeutic and supportive approaches. Enhancement of perceived social support, for those who are impaired, and encouragement of social interactions, for those who are ill, may be important intervention targets for treatment of depressive symptoms in older adult primary care patients

    Reducing microscopy-based malaria misdiagnosis in a low-resource area of Tanzania

    Get PDF
    Misdiagnosis of malaria is a major problem in Africa leading not only to incorrect individual level treatment, but potentially the acceleration of the spread of drug resistance in low-transmission areas. In this paper we report on the outcomes of a simple intervention that utilized a social entrepreneurship approach (SEA) to reduce misdiagnosis associated with hospital-based microscopy of malaria in a low-transmission area of rural Tanzania. A pre-post assessment was conducted on patients presenting to the hospital outpatient department with malaria and non-malaria like symptoms in January 2009 (pre-intervention) and June 2009 (post-intervention). All participants were asked a health seeking behavior questionnaire and blood samples were taken for local and quality control microscopy. Multivariate logistic regression was conducted to determine magnitude of misdiagnosis with local microscopy pre- versus- post intervention. Local microscopy pre-intervention specificity was 29.5% (95% CI = 21.6% – 38.4%) whereas the post intervention specificity was 68.6% (95% CI = 60.2% - 76.2%). Both pre and post intervention sensitivity were difficult to determine due to an unexpected low number of true positive cases. The proportion of participants misdiagnosed pre-intervention was 70.2% (95%CI = 61.3%-78.0%) as compared to 30.6% (95%CI = 23.2%–38.8%) post-intervention. This resulted in a 39.6% reduction in misdiagnosis of malaria at the local hospital. The magnitude of misdiagnosis for the pre-intervention participants was 5.3 (95%CI = 3.1–9.3) that of the post-intervention participants. In conclusion, this study provides evidence that a simple intervention can meaningfully reduce the magnitude of microscopy-based misdiagnosis of malaria for those individuals seeking treatment for uncomplicated malaria. We anticipate that this intervention will facilitate a valuable and sustainable change in malaria diagnosis at the local hospital

    Robust neuroinflammation and perivascular pathology in rTg-DI rats, a novel model of microvascular cerebral amyloid angiopathy

    Get PDF
    Background Cerebral amyloid angiopathy (CAA) is a common cerebral small vessel disease of the aged and a prominent comorbidity of Alzheimer’s disease (AD). CAA can promote a variety of vascular-related pathologies including neuroinflammation, cerebral infarction, and hemorrhages, which can all contribute to vascular cognitive impairment and dementia (VCID). Our understanding of the pathogenesis of CAA remains limited and further investigation of this condition requires better preclinical animal models that more accurately reflect the human disease. Recently, we generated a novel transgenic rat model for CAA (rTg-DI) that develops robust and progressive microvascular CAA, consistent microhemorrhages and behavioral deficits. Methods In the current study, we investigated perivascular pathological processes that accompany the onset and progressive accumulation of microvascular CAA in this model. Cohorts of rTg-DI rats were aged to 3 months with the onset of CAA and to 12 months with advanced stage disease and then quantitatively analyzed for progression of CAA, perivascular glial activation, inflammatory markers, and perivascular stress. Results The rTg-DI rats developed early-onset and robust accumulation of microvascular amyloid. As the disease progressed, rTg-DI rats exhibited increased numbers of astrocytes and activated microglia which were accompanied by expression of a distinct subset of inflammatory markers, perivascular pericyte degeneration, astrocytic caspase 3 activation, and disruption of neuronal axonal integrity. Conclusions Taken together, these results demonstrate that rTg-DI rats faithfully mimic numerous aspects of human microvascular CAA and provide new experimental insight into the pathogenesis of neuroinflammation and perivascular stress associated with the onset and progression of this condition, suggesting new potential therapeutic targets for this condition. The rTg-DI rats provide an improved preclinical platform for developing new biomarkers and testing therapeutic strategies for microvascular CAA
    corecore